Microfluidic Module for Real-Time Generation of Complex Multimolecule Temporal Concentration Profiles.

نویسندگان

  • Kristina Woodruff
  • Sebastian J Maerkl
چکیده

We designed a microfluidic module that generates complex and dynamic concentration profiles of multiple molecules over a large concentration range using pulse-width modulation (PWM). Our PWM module can combine up to six different inputs and select among three downstream mixing channels, as required by the application. The module can produce concentrations with a dynamic range of three decades. We created complex, temporal concentration profiles of two molecules, with each concentration independently controllable, and show that the PWM module can execute rapid concentration changes as well as long-time scale pharmacokinetic profiles. Concentration profiles were generated for molecules with molecular weights ranging from 560 Da to 150 kDa. Our PWM module produces robust and precise concentration profiles under a variety of operating conditions, making it ideal for integration with existing microfluidic devices for advanced cell and pharmacokinetic studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PRACTICAL APPROACH TO REAL-TIME DYNAMIC BACKGROUND GENERATION BASED ON A TEMPORAL MEDIAN FILTER

In many computer vision applications, segmenting and extraction of moving objects in video sequences is an essential task. Background subtraction, by which each input image is subtracted from the reference image, has often been used for this purpose. In this paper, we offer a novel background-subtraction technique for real-time dynamic background generation using color images that are taken fro...

متن کامل

Microfluidic device for the combinatorial application and maintenance of dynamically imposed diffusional gradients

This article reports a microfluidic device for the generation of stable, steady-state, user-defined concentration profiles for the long-term maintenance of stable diffusion gradients. The microinstrument allows both dynamic temporal and dynamic spatial control over userdefined concentrations and concentration gradients of multiple chemicals. With this device, one can create an in vitro environm...

متن کامل

Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow.

This paper proposes novel microfluidic concentration gradient generator (CGG) devices that are capable of constructing complex profiles of chemical concentrations by laterally combining the constituent profiles (e.g., linear and bell-shaped) generated in simple Y- or psi-shaped mixers. While the majority of currently existing CGG devices are based on complete mixing of chemical species, our des...

متن کامل

Systematic modeling of microfluidic concentration gradient generators

This paper presents a systematic modeling methodology for microfluidic concentration gradient generators. The generator is decomposed into a system of microfluidic elements with relatively simple geometries. Parameterized models for such elements are analytically developed and hold for general sample concentration profiles and arbitrary flow ratios at the element inlet; hence, they are valid fo...

متن کامل

Modular microfluidics for gradient generation.

This paper describes a modular approach to constructing microfluidic systems for the generation of gradients of arbitrary profiles. Unlike most current microfluidic-based systems that have integrated architectures, we design several basic component modules such as distributors, combiners, resistors and collectors and connect them into networks that produce gradients of any profile at will. Usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 90 1  شماره 

صفحات  -

تاریخ انتشار 2018